Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis

Identifieur interne : 000060 ( Main/Repository ); précédent : 000059; suivant : 000061

Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis

Auteurs : RBID : Pascal:14-0096928

Descripteurs français

English descriptors

Abstract

A rapid increase in anthropogenic emission of greenhouse gases, mainly carbon dioxide, has been a growing cause for concern. While photocatalytic reduction of carbon dioxide (CO2) into solar fuels can provide a solution, lack of insight into energetic pathways governing photocatalysis has impeded study. Here, we utilize measurements of electronic density of states (DOS), using scanning tunneling microscopy/spectroscopy (STM/STS), to identify energy levels responsible for photocatalytic reduction of CO2-water in an artificial photosynthetic process. We introduce desired states in titanium dioxide (TiO2) nanoparticles, using metal dopants or semiconductor nanocrystals, and the designed catalysts were used for selective reduction of CO2 into hydrocarbons, alcohols, and aldehydes. Using a simple model, we provide insights into the photophysics governing this multielectron reduction and design a new composite photocatalyst based on overlapping energy states of TiO2 and copper indium sulfide (CIS) nanocrystals. These nanoparticles demonstrate the highest selectivity for ethane (>70%) and a higher efficiency of converting ultraviolet radiation into fuels (4.3%) using concentrated sunlight (>4 Sun illumination), compared with platinum-doped TiO2 nanoparticles (2.1%), and utilize hot electrons to tune the solar fuel from alkanes to aldehydes. These results can have important implications for the development of new inexpensive photocatalysts with tuned activity and selectivity.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0096928

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis</title>
<author>
<name sortKey="Singh, Vivek" uniqKey="Singh V">Vivek Singh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boulder, Colorado 80303</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castellanos Eltran, Ignacio J" uniqKey="Castellanos Eltran I">Ignacio J. Castellanos Eltran</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boulder, Colorado 80303</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Casamada Ribot, Josep" uniqKey="Casamada Ribot J">Josep Casamada Ribot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boulder, Colorado 80303</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nagpal, Prashant" uniqKey="Nagpal P">Prashant Nagpal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boulder, Colorado 80303</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Materials Science and Engineering, University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boulder, Colorado 80303</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boulder, Colorado 80303</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0096928</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0096928 INIST</idno>
<idno type="RBID">Pascal:14-0096928</idno>
<idno type="wicri:Area/Main/Corpus">000022</idno>
<idno type="wicri:Area/Main/Repository">000060</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohols</term>
<term>Aldehydes</term>
<term>Carbon dioxide</term>
<term>Catalysts</term>
<term>Composite materials</term>
<term>Copper sulfide</term>
<term>Doping</term>
<term>Electronic density of states</term>
<term>Energy levels</term>
<term>Hot electrons</term>
<term>Hydrocarbons</term>
<term>Illumination</term>
<term>Indium sulfide</term>
<term>Nanocrystal</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Photocatalysis</term>
<term>Photosynthesis</term>
<term>Platinum</term>
<term>Scanning tunneling microscopy</term>
<term>Scanning tunneling spectroscopy</term>
<term>Selectivity</term>
<term>Semiconductor materials</term>
<term>Titanium</term>
<term>Ultraviolet radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photocatalyse</term>
<term>Catalyseur</term>
<term>Photosynthèse</term>
<term>Dioxyde de carbone</term>
<term>Densité état électron</term>
<term>Spectrométrie tunnel balayage</term>
<term>Microscopie tunnel balayage</term>
<term>Niveau énergie</term>
<term>Titane</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Semiconducteur</term>
<term>Nanocristal</term>
<term>Hydrocarbure</term>
<term>Alcool</term>
<term>Aldéhyde</term>
<term>Matériau composite</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Sélectivité</term>
<term>Rayonnement UV</term>
<term>Eclairement</term>
<term>Platine</term>
<term>Dopage</term>
<term>Electron chaud</term>
<term>8116H</term>
<term>8107B</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Titane</term>
<term>Hydrocarbure</term>
<term>Alcool</term>
<term>Matériau composite</term>
<term>Platine</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A rapid increase in anthropogenic emission of greenhouse gases, mainly carbon dioxide, has been a growing cause for concern. While photocatalytic reduction of carbon dioxide (CO
<sub>2</sub>
) into solar fuels can provide a solution, lack of insight into energetic pathways governing photocatalysis has impeded study. Here, we utilize measurements of electronic density of states (DOS), using scanning tunneling microscopy/spectroscopy (STM/STS), to identify energy levels responsible for photocatalytic reduction of CO
<sub>2</sub>
-water in an artificial photosynthetic process. We introduce desired states in titanium dioxide (TiO
<sub>2</sub>
) nanoparticles, using metal dopants or semiconductor nanocrystals, and the designed catalysts were used for selective reduction of CO
<sub>2</sub>
into hydrocarbons, alcohols, and aldehydes. Using a simple model, we provide insights into the photophysics governing this multielectron reduction and design a new composite photocatalyst based on overlapping energy states of TiO
<sub>2</sub>
and copper indium sulfide (CIS) nanocrystals. These nanoparticles demonstrate the highest selectivity for ethane (>70%) and a higher efficiency of converting ultraviolet radiation into fuels (4.3%) using concentrated sunlight (>4 Sun illumination), compared with platinum-doped TiO
<sub>2</sub>
nanoparticles (2.1%), and utilize hot electrons to tune the solar fuel from alkanes to aldehydes. These results can have important implications for the development of new inexpensive photocatalysts with tuned activity and selectivity.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SINGH (Vivek)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CASTELLANOS ELTRAN (Ignacio J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CASAMADA RIBOT (Josep)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>NAGPAL (Prashant)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Materials Science and Engineering, University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder</s1>
<s2>Boulder, Colorado 80303</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>597-603</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000506135620310</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0096928</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A rapid increase in anthropogenic emission of greenhouse gases, mainly carbon dioxide, has been a growing cause for concern. While photocatalytic reduction of carbon dioxide (CO
<sub>2</sub>
) into solar fuels can provide a solution, lack of insight into energetic pathways governing photocatalysis has impeded study. Here, we utilize measurements of electronic density of states (DOS), using scanning tunneling microscopy/spectroscopy (STM/STS), to identify energy levels responsible for photocatalytic reduction of CO
<sub>2</sub>
-water in an artificial photosynthetic process. We introduce desired states in titanium dioxide (TiO
<sub>2</sub>
) nanoparticles, using metal dopants or semiconductor nanocrystals, and the designed catalysts were used for selective reduction of CO
<sub>2</sub>
into hydrocarbons, alcohols, and aldehydes. Using a simple model, we provide insights into the photophysics governing this multielectron reduction and design a new composite photocatalyst based on overlapping energy states of TiO
<sub>2</sub>
and copper indium sulfide (CIS) nanocrystals. These nanoparticles demonstrate the highest selectivity for ethane (>70%) and a higher efficiency of converting ultraviolet radiation into fuels (4.3%) using concentrated sunlight (>4 Sun illumination), compared with platinum-doped TiO
<sub>2</sub>
nanoparticles (2.1%), and utilize hot electrons to tune the solar fuel from alkanes to aldehydes. These results can have important implications for the development of new inexpensive photocatalysts with tuned activity and selectivity.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photosynthèse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photosynthesis</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Spectrométrie tunnel balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Scanning tunneling spectroscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microscopie tunnel balayage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Scanning tunneling microscopy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Titane</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Titanium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Hydrocarbure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Hydrocarbons</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Alcool</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Alcohols</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Aldéhyde</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Aldehydes</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Matériau composite</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Composite materials</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Rayonnement UV</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Platine</s0>
<s2>NC</s2>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Platinum</s0>
<s2>NC</s2>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Doping</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Doping</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Electron chaud</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Hot electrons</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8116H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>132</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000060 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000060 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0096928
   |texte=   Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024